

2003 AFCEE Technology Transfer Workshop

Promoting Readiness through Environmental Stewardship

Installation of Diverse Sand/ZVI Mixtures in the Construction of Permeable Reactive Barriers (PRBs)

Kelly Redevelopment and Goose Creek

Mr. Aiman Naguib
Williams Environmental Services, Inc.
February 26, 2003

Former Kelly AFB PRB

Zone 5, Building P1533 PRB Former Kelly Air Force Base San Antonio, Texas

Scope of Work

- Construction of 24-Inch wide, 650-Foot Long Sand-Iron Filings PRB
- PRB Depth Ranged from 34.5 to 43.5 Feet with Total Facial Area of Approximately 26,700 Square Feet
- PRB Excavated Using Biopolymer Slurry through Consolidated Seams of Gravel, Sandstone and Claystone
- Trench Keyed 1-foot into Underlying Navarro Clay Layer

Scope of Work (Continued)

- Trench Backfilled with Sand-Iron Treatment Media
 Using Tremie Method
- Two Treatment Media Blends Used (50%:50% & 90%:10% Sand to Iron By Volume)
- Treatment Media Placed up to 1-Foot Above Groundwater Table
- Remaining Upper Portion Backfilled with "Sand Flowable Fill" and Capped With 5-Foot of Clay
- (4) In-Trench PVC Wells Installed to Develop Trench and Monitor Groundwater

Contaminants of Concern

- Acetone
- Chlorobenzene
- Chloroform
- 1,1-Dichloroethylene
- Tetrachloroethylene
- Trichloroethylene
- COC Concentrations Ranged from 1 to 23 ug/l

Constructed PRB Schematic

Zone 5, Building P1533 PRB Schematic (NTS)

PRB Excavation under Slurry

Tremie Pipe Placement

Sand-Iron Mixing Process

Sand-Iron Mixing Process

Sand-Iron Tremie Process

Sand-Iron Tremie Process

Goose Creek PRB

Solid Waste Management Unit 12 Permeable Reactive Barrier (PRB) Naval Weapons Station Charleston, South Carolina

Scope of Work

- Construction of 36-Inch wide, 130-Foot Long Iron & Sand-Iron PRB
- PRB Depth Ranged from 37.0 to 40.0 Feet
- PRB Excavated Using Biopolymer Slurry through Interbeded Layers of Clay & Sandy Clay
- Trench Keyed 2-feet into a Confining Clay Unit
- Trench Backfilled with Pure Iron and Various Ratios of Sand-Iron Treatment Media

Scope of Work (Continued)

- Treatment Media Place Using Tremie Method
- Elevated Work Platform was Constructed 5-Foot Above Natural Surface Due to High Groundwater Conditions
- Three Treatment Media Blends (By Weight) Used as Follows;
 - 20 %: 80 % Iron Filings to Sand
 - 50 % : 50 % Iron Filings to Sand
 - 100 % Zero-Valent Iron

Scope of Work (Continued)

- Media Placed up to 2.5-Feet Below Original Ground Surface
- PRB Capped with Woven Geotextile Fabric and 2.5-Feet of Clay
- PVC In-Trench Wells Installed to Develop Trench & Monitor Groundwater

Contaminants of Concern

- Vinyl Chloride
- 1,1 Dichloroethene
- 1,1 Dichloroethane
- CIS 1,2 Dichloroethene
- 1,2 Dichloroethene
- 1,1,1-Trichloroethane
- Trichloroethene
- Tetrachloroethene
- COC Concentrations Ranged from 2,200 to 400,000 ppb

Constructed PRB Schematic

Schematic of Goose Creek PRB (NTS)

Work Platform Construction

Tremie Pipe Placement

Sand-Iron Mixing Process

Sand-Iron Conveyance to Trench

Typical Slurry Batch Plant

Figure 1
Typical Slurry Batch Plant Schematic
(NTS)

PRB Installation Sequence

Typical PRB Construction Schematic (NTS)

PRB Installation Sequence

Typical Schematic of Iron-Sand Tremie Operation (NTS)

Laboratory Slurry Compatibility

- Guar Gum is Tested for Compatibility with Site Mix Water, In-Situ Soil and Groundwater
- Slurry Mixtures are Monitored for:
 - Slurry Viscosity
 - Slurry pH
 - Slurry Unit Weight
- Slurry Mixtures Monitored for above Parameters for (7) Days Prior to Use
- This is Done to Insure Slurry Degradation Does Not Occur During Construction

- Biopolymer Slurry at Batch Plant
 - Slurry Viscosity
 - Slurry pH
 - Slurry Unit Weight
- Biopolymer Slurry in the Trench
 - Slurry Viscosity
 - Slurry pH
 - Slurry Unit Weight
 - Slurry Sand Content

- Reactive Media Prior to Placement in the Trench
 - Coarse Sand Gradation
 - Iron Filings Gradation (QA)
 - Magnetic Separation on Each Sand-Iron Batch
- Reactive Media After Placement in the Trench
 - Permeability of Sand-Iron Mixture
- Flowable Sand Prior to Placement in the Trench
 - Sand Gradation

- During Slurry Trenching & Backfill Placement
 - Depth Sounding of each Excavated Segment
 - Depth Sounding of Trench Prior to Placement of Treatment Media
 - Depth Sounding and Slope Profile of Treatment Media
 After Placement
 - Depth Sounding and Slope Profile of Flowable Sand Above Treatment Media

- Degraded Biopolymer Slurry
 - Degraded Slurry pH
 - Degraded Slurry Viscosity
 - Other Analytical Tests (Specific for Off-Site Disposal)
- Clay Cap Testing
 - Proctor Curve Development on Clay
 - Compaction Density Tests on Each Cap Lift

Benefits of Using Diverse Media

- Very Cost Effective Since Iron Application is Tailored to each PRD Segment
- Effective Placement of Different Reactive Media
 Blends Can be Done Vertically and Horizontally
- Various Treatment Mixtures Can Blended to an Accuracy of (+) or (-) 2%